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DESIGN 
PROBLEM

• hard to model 
• heterogeneities 
• domain-specific challenges

CURRENT APPROACH: tailored solution to specific problems
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which rules should 
each agent follow?

- discover the options 
- estimate their qualities 
- select the best one
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design rationale

nest-site selection in 
honeybees 

+ attains near-optimal 
speed-accuracy tradeoff 

+ no need of direct comparison 
between option qualities 

+ adaptive mechanisms to tune 
decision speed and to break 
symmetry deadlocks



nest-site selection model
the model. In fact, the model is composed by two coupled ordinary di↵erential equations
that describe the process as deterministic continuous and wholly predictable. However, the
distributed process is not continuous, because the population size can change only of integer
agent quantities. Additionally, the time evolution is not totally deterministic for the description
level that the model considers. A model that would take into account the whole, complete,
precise state of each agent is a deterministic model; however, at a population level, only the
commitment of the agent is taken into account, therefore the process is not a deterministic one.

The mean-field model is the following:
8
<

:

 ̇A =  U(�A + ⇢A A)� A(↵A + �B B)
 ̇B =  U(�B + ⇢B B)� B(↵B + �A A)
 U = 1� A � B

(3)

where �, ↵, ⇢ and � are the rates at which the transitions of discovery, abandonment, recruitment
and cross-inhibition take place.

WRONG EQUATIOnN with DIRECT SWITCH
8
<

:

 ̇A =  U(�A + ⇢A A)� A↵A + (�A � �B) A B

 ̇B =  U(�B + ⇢B B)� B↵B + (�B � �A) A B

 U = 1� A � B

(4)

To compensate some of the approximation of the mean-field model, hereafter we describe
the process through the Master equation.

Population level model – The Master equation. The master equation describes the time
evolution of the system as a stochastic, discrete process. This model allows us to account for
the stochastic fluctuations of the system and for its finite size e↵ects. The main di↵erence from
the previous model consist in using transition probabilities per unit time, instead of considering
the transition rates. We label the transition probabilities as Q�, Q↵, Q⇢ and Q�, which are
obviously closely related to the respective rates �, ↵, ⇢ and �. In particular, the eight transition
probabilities are computed as:

Q�A = �A = P�A Q�B = �B = P�B

Q↵A = ↵A = P↵A Q↵B = ↵B = P↵B

Q⇢A = N

�1
⇢A = P⇢A Q⇢B = N

�1
⇢B = P⇢B

Q�A = N

�1
�A = P�A Q�B = N

�1
�B = P�B

(5)

While, the quantities Qi are defined as:

Q1 = NUQ�A Q2 = NUQ�B

Q3 = NAQ↵A Q4 = NBQ↵B

Q5 = NUNAQ⇢A Q6 = NUNBQ⇢B

Q7 = NANBQ�A Q8 = NANBQ�B

(6)

Even if, from a numerical point of view, the di↵erence between rates and probabilities is of a
simple constant factor, it allows us to pass from a continuous deterministic model to a discrete
stochastic one. The master equation is the following:

�
�tP (NA, NB, NU , t) =

8P
i
[�i � P (NA, NB, NU , t)Qi] (7)

where the term �⌘,i is the probability that the system is one transition i “away” from the state
(NA, NB, NU) at time t, and undergoes the transition i in (t, t+ dt).

Due to the di�culties related analytically solve the Equation 7, we analyse the master
equation through the Gillespie algorithm [?], which allow us to approximate the master equation
solutions with Monte Carlo simulations.
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Macroscopic description: infinite-size, deterministic, time/state-space continuous Let us consider a population of N
agents. At the macroscopic level, we model the population fractions of committed agents Yi = Ni/N (with Ni the number
of agents committed to option i) and the fraction of uncommitted agents YU = NU/N (with NU the number of uncommitted
agents). Agents change their commitment state through four different processes: discovery (g), abandonment (a), recruitment
(r) and cross-inhibition (s ).

We extend the model for binary decisions proposed in3 to the best-of-n decision problem. The model describes the mean
system behaviour as a system of n coupled ODEs and an algebraic equation for mass conservation:

⇢
Ẏi = giYU �aiYi +riYiYU �Â j 6=i s jYiY j
YU = 1�Âi Yi

(1)

Each differential equation in (1) describes the variation of the fraction of agents in each population. The fraction of agents
committed to option i 2 {1, . . . ,n} increases through the discovery of option i (at a rate gi) and through recruitment proportional
to the population committed to i (at a rate riYi). Conversely, the fraction decreases through abandonment (at a rate ai) or
through cross-inhibition proportional to the contrasting populations (at a rate Â j 6=i s jY j,). All model parameters represent the
rate at which agents change their commitment state. Therefore, we assume all model parameters to be non-negative:

ai,gi,ri,si � 0, i 2 {1, . . . ,n}. (2)

For a decision-making problem based on the quality of the available options, all model parameters could be linked to the option
quality vi:

ai = f
a

(vi), gi = f
g

(vi), ri = f
r

(vi), si = f
s

(vi), (3)

where each function describes a specific relationship between transition rate and option quality (see4 for an example).
This model describes the average proportion of agents in each population for a system with an infinite number of agents.

It is deterministic and continuous in time and in the state space. The model can be exploited to determine the macroscopic
behaviour corresponding to a given parameterisation, and to provide constraints to the possible parameterisations in order to
obtain a desired system behaviour. This ultimately translates in constraints in the design of the relationship between option
quality vi and transition rates gi, ai, ri, and si.

Macroscopic description: finite-size, stochastic, time continuous, state-space discrete The mean-field model can be
derived from a Markov process.3 We can represent the generalised case for best-of-n decisions through chemical reactions
representing agents changing their commitment state, either spontaneously or by interacting with other agents:

CU
Q

gi��! Ci

Ci
Q

ai��! CU

CU +Ci
Q

ri��! 2Ci

Ci +Cj
Q

s j��! CU +Cj, i 6= j

(4)

where the Q
li ,l 2 {a,g,r,s} represent reaction constants.5 Starting from the above description, it is possible to derive the

master equation, which describes the time evolution of the system as a stochastic, discrete-state process. More precisely, the
master equation describes the time evolution of the probability mass function related to each possible state in which the system
can be found:

d

d t
P(N, t) =

4n

Â
k=1

[bk �P(N, t)Qk], 8N (5)

where N = hNU ,N1, . . . ,Nni corresponds to the system state, and the term bk is the probability that the system is one transition
k “away” from state N at time t, and undergoes the transition k in (t, t +d t). The quantities Qk are defined as follows:

Q1 = NUQ
g1 Q2 = N1Qa1

Q3 = NU N1Qr1 Q4 = Â j 6=1 N1NjQs j

. . .

. . .

. . .
Q4n�3 = NUQ

gn Q4n�2 = NnQan

Q4n�1 = NU NnQrn Q4n = Â j 6=n NnNjQsn

(6)

3/17

System of ODEs
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multi-level description of the decision process

Macroscopic 
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time continuous

Macroscopic description: infinite-size, deterministic, time/state-space continuous Let us consider a population of N
agents. At the macroscopic level, we model the population fractions of committed agents Yi = Ni/N (with Ni the number
of agents committed to option i) and the fraction of uncommitted agents YU = NU/N (with NU the number of uncommitted
agents). Agents change their commitment state through four different processes: discovery (g), abandonment (a), recruitment
(r) and cross-inhibition (s ).

We extend the model for binary decisions proposed in3 to the best-of-n decision problem. The model describes the mean
system behaviour as a system of n coupled ODEs and an algebraic equation for mass conservation:

⇢
Ẏi = giYU �aiYi +riYiYU �Â j 6=i s jYiY j
YU = 1�Âi Yi

(1)

Each differential equation in (1) describes the variation of the fraction of agents in each population. The fraction of agents
committed to option i 2 {1, . . . ,n} increases through the discovery of option i (at a rate gi) and through recruitment proportional
to the population committed to i (at a rate riYi). Conversely, the fraction decreases through abandonment (at a rate ai) or
through cross-inhibition proportional to the contrasting populations (at a rate Â j 6=i s jY j,). All model parameters represent the
rate at which agents change their commitment state. Therefore, we assume all model parameters to be non-negative:

ai,gi,ri,si � 0, i 2 {1, . . . ,n}. (2)

For a decision-making problem based on the quality of the available options, all model parameters could be linked to the option
quality vi:

ai = f
a

(vi), gi = f
g

(vi), ri = f
r

(vi), si = f
s

(vi), (3)

where each function describes a specific relationship between transition rate and option quality (see4 for an example).
This model describes the average proportion of agents in each population for a system with an infinite number of agents.

It is deterministic and continuous in time and in the state space. The model can be exploited to determine the macroscopic
behaviour corresponding to a given parameterisation, and to provide constraints to the possible parameterisations in order to
obtain a desired system behaviour. This ultimately translates in constraints in the design of the relationship between option
quality vi and transition rates gi, ai, ri, and si.

Macroscopic description: finite-size, stochastic, time continuous, state-space discrete The mean-field model can be
derived from a Markov process.3 We can represent the generalised case for best-of-n decisions through chemical reactions
representing agents changing their commitment state, either spontaneously or by interacting with other agents:

CU
Q

gi��! Ci

Ci
Q

ai��! CU

CU +Ci
Q

ri��! 2Ci

Ci +Cj
Q

s j��! CU +Cj, i 6= j

(4)

where the Q
li ,l 2 {a,g,r,s} represent reaction constants.5 Starting from the above description, it is possible to derive the

master equation, which describes the time evolution of the system as a stochastic, discrete-state process. More precisely, the
master equation describes the time evolution of the probability mass function related to each possible state in which the system
can be found:

d

d t
P(N, t) =

4n

Â
k=1

[bk �P(N, t)Qk], 8N (5)

where N = hNU ,N1, . . . ,Nni corresponds to the system state, and the term bk is the probability that the system is one transition
k “away” from state N at time t, and undergoes the transition k in (t, t +d t). The quantities Qk are defined as follows:

Q1 = NUQ
g1 Q2 = N1Qa1

Q3 = NU N1Qr1 Q4 = Â j 6=1 N1NjQs j
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Figure S1. Probabilistic Finite State Machines (PFSMs) describing the microscopic behaviour of an agent in average. Here,
the notation P

li ,l 2 {g,a,r,s}, i 2 {1, . . . ,n} is a shorthand for P
l

(vi). (A) PFSM describing the basic commitment
dynamics for n possible options. Spontaneous transitions are represented by bold lines, while interactive transitions are
represented by dashed lines. (B) PFSM describing the coupled commitment and activity dynamics. Latent states are indicated
in grey, and dash-dotted lines represent changes between latent and interactive states.

11/17

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015). A Design Pattern for Decentralised 
Decision Making. PLoS ONE, 10(10), e0140950–18.



design pattern solution 
multi-level description of the decision process

C1

...

Cn

CU

CI
1

...

CI
n

CL
U

CL
1

...

CL
n

CI
U

A B

P–1

q
j ”=1 P�j P‡j

P–n q
j ”=n P�j P‡j

P“1
P�1Pfl1

P“n

P�nPfln

PL,1

q
j ”=1 P�j P‡j

PI

P–1

PL,n

q
j ”=n P�j P‡j

PI

P–n

PL,U

P�1Pfl1

P�nPfln

PI

P“1

P“n

Figure S1. Probabilistic Finite State Machines (PFSMs) describing the microscopic behaviour of an agent in average. Here,
the notation P

li ,l 2 {g,a,r,s}, i 2 {1, . . . ,n} is a shorthand for P
l

(vi). (A) PFSM describing the basic commitment
dynamics for n possible options. Spontaneous transitions are represented by bold lines, while interactive transitions are
represented by dashed lines. (B) PFSM describing the coupled commitment and activity dynamics. Latent states are indicated
in grey, and dash-dotted lines represent changes between latent and interactive states.

11/17

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015). A Design Pattern for Decentralised 
Decision Making. PLoS ONE, 10(10), e0140950–18.



C1

...

Cn

CU

CI
1

...

CI
n

CL
U

CL
1

...

CL
n

CI
U

A B

P–1

q
j ”=1 P�j P‡j

P–n q
j ”=n P�j P‡j

P“1
P�1Pfl1

P“n

P�nPfln

PL,1

q
j ”=1 P�j P‡j

PI

P–1

PL,n

q
j ”=n P�j P‡j

PI

P–n

PL,U

P�1Pfl1

P�nPfln

PI

P“1

P“n

Figure S1. Probabilistic Finite State Machines (PFSMs) describing the microscopic behaviour of an agent in average. Here,
the notation P

li ,l 2 {g,a,r,s}, i 2 {1, . . . ,n} is a shorthand for P
l

(vi). (A) PFSM describing the basic commitment
dynamics for n possible options. Spontaneous transitions are represented by bold lines, while interactive transitions are
represented by dashed lines. (B) PFSM describing the coupled commitment and activity dynamics. Latent states are indicated
in grey, and dash-dotted lines represent changes between latent and interactive states.

11/17

8
<

:

 ̇i = �i U � ↵i i+
⇢i i U �

P
j 6=i �j i j

 U = 1�
P

i i

micro-macro link
transform parameters of the macroscopic model into 
the probabilities of the individual PFSM



design pattern: solution 
implementation guidelines

Latent and  
interactive agents

Interactions cannot take 
place at any moment

Local interactions

How to estimate 
the population size?

Homogenous vs. 
heterogenous agents

The transition 
probabilities may vary 

in each agent

We provide solutions to attain a micro-macro link 
in all these situations

Minimum speed 
of the process

The timestep length of 
each agent must be 
conveniently sized

Episodic discovery

In many scenarios, 
discovery is an 
episodic event



design pattern: case studies

• showcase the usage of the design pattern 
• in simplified situations 

• in particularly challenging working conditions
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Case study #1

.1. 
Multiagent simulations 

on fully-connected 
networks 

Basic case study to 
investigate several 
parameterisations
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Case study #2

.2. 
Multiagent simulations 

for search & 
exploration

Mobile point-size 
particles capable to 

move in a 2D 
environment

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015). A Design Pattern for Decentralised 
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Case study #3

.3. 
Swarm robotics 

system for search & 
exploration

Physics-based 
simulations to exemplify 
embodiment challenges

Reina, A., Miletitch, R., Dorigo, M., & Trianni, V. (2015). A quantitative micro–macro link  
for collective decisions: the shortest path discovery/selection example. Swarm Intelligence, 9(2-3), 75–102.



Case study #3

.3. 
Swarm robotics 

system for search & 
exploration

Physics-based 
simulations to exemplify 
embodiment challenges

video by A. Reina
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for collective decisions: the shortest path discovery/selection example. Swarm Intelligence, 9(2-3), 75–102.



Case Study #4

.4. 
Coexistence in 
heterogeneous 

cognitive network

fully-decentralised 
solution for channel 

selection in cognitive 
radio networks

Trianni, V., Cacciapuoti, A.S., & Caleffi, M. Distributed Design for Fair Coexistence in TVWS. Submitted to the 
2016 IEEE International Conference on Communications (ICC 2016), 23-27 May 2016, Kuala-Lampur, Malaysia
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your attention


