A Design Pattern for Swarm-Centric Decision Making

Vito Trianni
vito.trianni@istc.cnr.it

Tuesday, June the 7th, 2016

design of decentralised systems

- large number of
interconnected agents
- distributed, decentralised
- self-organised

design of decentralised systems

macroscopic behaviour

individual agent rules

design of decentralised systems

WIRELESS

SENSOR NETWORKS

macroscopic behaviour

- hard to model
- heterogeneities
- domain-specific challenges

CURRENT APPROACH: tailored solution to specific problems

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., \& Trianni, V. (2015). A Design Pattern for Decentralised Decision Making. PLoS ONE, 10(10), e0140950-18.

design patterns

- reusable solutions for a specific class of problems
- leverage on the principled understanding of theoretical models of collective systems

design patterns

- reusable solutions for a specific class of problems
- leverage on the principled understanding of theoretical models of collective systems

Design Pattern

decentralised decision making

- best-of- n decision problem
- set of n options
- each option i has a quality v_{i}

- GOAL: select the best (or equal-best) option

decentralised decision making

- best-of- n decision problem
- set of n options
- each option i has a quality v_{i}

- GOAL: select the best (or equal-best) option

design rationale

nest-site selection in honeybees

+ attains near-optimal speed-accuracy tradeoff
+ no need of direct comparison between option qualities
+ adaptive mechanisms to tune decision speed and to break symmetry deadlocks

nest-site selection model

discovery:

$$
\begin{aligned}
& U \longrightarrow A \\
& U \longrightarrow B
\end{aligned}
$$

abandonment:

$$
\begin{aligned}
& A \longrightarrow U \\
& B \longrightarrow U
\end{aligned}
$$

recruitment:

$$
\begin{array}{ll}
A+U \longrightarrow & A+A \\
B+U \longrightarrow & B+B
\end{array}
$$

direct switch:

$$
\begin{array}{ll}
A+B \longrightarrow A \\
B+A \longrightarrow A \\
& A+B
\end{array}
$$

$\left\{\begin{array}{l}\dot{\Psi}_{A}=\Psi_{U}\left(\gamma_{A}+\rho_{A} \Psi_{A}\right)-\Psi_{A} \alpha_{A}+\left(\sigma_{A}-\sigma_{B}\right) \Psi_{A} \Psi_{B} \\ \dot{\Psi}_{B}=\Psi_{U}\left(\gamma_{B}+\rho_{B} \Psi_{B}\right)-\Psi_{B} \alpha_{B}+\left(\sigma_{B}-\sigma_{A}\right) \Psi_{A} \Psi_{B} \\ \Psi_{U}=1-\Psi_{A}-\Psi_{B}\end{array}\right.$
J. A. R. Marshall et al., "On optimal decision-making in brains and social insect colonies," Journal of The Royal Society Interface, vol. 6, no. 40, pp. 1065-1074, 2009.

nest-site selection model

discovery:

abandonment:

recruitment:

$$
\begin{aligned}
& A+U \longrightarrow A+A \\
& B+U \longrightarrow B+B
\end{aligned}
$$

direct switch:

$$
\begin{aligned}
& A+B \longrightarrow A+A \\
& B+A \longrightarrow B+B
\end{aligned}
$$

$\left\{\begin{array}{l}\dot{\Psi}_{A}=\Psi_{U}\left(\gamma_{A}+\rho_{A} \Psi_{A}\right)-\Psi_{A} \alpha_{A}+\left(\sigma_{A}-\sigma_{B}\right) \Psi_{A} \Psi_{B} \\ \dot{\Psi}_{B}=\Psi_{U}\left(\gamma_{B}+\rho_{B} \Psi_{B}\right)-\Psi_{B} \alpha_{B}+\left(\sigma_{B}-\sigma_{A}\right) \Psi_{A} \Psi_{B} \\ \Psi_{U}=1-\Psi_{A}-\Psi_{B}\end{array}\right.$
J. A. R. Marshall et al., "On optimal decision-making in brains and social insect colonies," Journal of The Royal Society Interface, vol. 6, no. 40, pp. 1065-1074, 2009.

nest-site selection model

discovery:

abandonment:

recruitment:

$$
\begin{aligned}
& A+U \longrightarrow A+A \\
& B+U \longrightarrow B+B
\end{aligned}
$$

direct switch:

$$
\begin{aligned}
& A+B \longrightarrow A+A \\
& B+A \longrightarrow B+B
\end{aligned}
$$

$\left\{\begin{array}{l}\dot{\Psi}_{A}=\Psi_{U}\left(\gamma_{A}+\rho_{A} \Psi_{A}\right)-\Psi_{A} \alpha_{A}+\left(\sigma_{A}-\sigma_{B}\right) \Psi_{A} \Psi_{B} \\ \dot{\Psi}_{B}=\Psi_{U}\left(\gamma_{B}+\rho_{B} \Psi_{B}\right)-\Psi_{B} \alpha_{B}+\left(\sigma_{B}-\sigma_{A}\right) \Psi_{A} \Psi_{B} \\ \Psi_{U}=1-\Psi_{A}-\Psi_{B}\end{array}\right.$
J. A. R. Marshall et al., "On optimal decision-making in brains and social insect colonies," Journal of The Royal Society Interface, vol. 6, no. 40, pp. 1065-1074, 2009.

direct-switch

T. D. Seeley, P. K. Visscher, T. Schlegel, P. M. Hogan, N. R. Franks, and J. A. R. Marshall, "Stop Signals Provide Cross Inhibition in Collective Decision-Making by Honeybee Swarms". Science, vol. 335, no. 6064, pp. 108-111, 2012.

direct-switch

stop-signal

T. D. Seeley, P. K. Visscher, T. Schlegel, P. M. Hogan, N. R. Franks, and J. A. R. Marshall, "Stop Signals Provide Cross Inhibition in Collective Decision-Making by Honeybee Swarms". Science, vol. 335, no. 6064, pp. 108-111, 2012.

resulting dynamics

discovery:

abandonment:

recruitment:

$$
\begin{aligned}
& A+U \longrightarrow A+A \\
& B+U \longrightarrow B+B
\end{aligned}
$$

direct switch:

$$
\begin{aligned}
& A+B \longrightarrow A+A \\
& B+A \longrightarrow B+B
\end{aligned}
$$

resulting dynamics

discovery:

abandonment:

recruitment:

$$
\begin{aligned}
& A+U \longrightarrow A+A \\
& B+U \longrightarrow B+B
\end{aligned}
$$

cross-inhibition

$$
\begin{array}{ll}
A+B \longrightarrow & A+U \\
B+A \longrightarrow & B+U
\end{array}
$$

design pattern solution multi-level description of the decision process

design pattern solution multi-level description of the decision process

Macroscopic
description
infinite-size
deterministic
time continuous

design pattern solution multi-level description of the decision process

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., \& Trianni, V. (2015). A Design Pattern for Decentralised Decision Making. PLoS ONE, 10(10), e0140950-18.

design pattern solution multi-level description of the decision process

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., \& Trianni, V. (2015). A Design Pattern for Decentralised Decision Making. PLoS ONE, 10(10), e0140950-18.

design pattern solution multi-level description of the decision process

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., \& Trianni, V. (2015). A Design Pattern for Decentralised Decision Making. PLoS ONE, 10(10), e0140950-18.

micro-macro link

transform parameters of the macroscopic model into the probabilities of the individual PFSM

$$
\left\{\begin{aligned}
\dot{\Psi}_{i}= & \gamma_{i} \Psi_{U}-\alpha_{i} \Psi_{i}+ \\
& \rho_{i} \Psi_{i} \Psi_{U}-\sum_{j \neq i} \sigma_{j} \Psi_{i} \Psi_{j} \\
\Psi_{U}= & 1-\sum_{i} \Psi_{i}
\end{aligned}\right.
$$

design pattern: solution implementation guidelines

Minimum speed
of the process
The timestep length of each agent must be conveniently sized

Episodic discovery

In many scenarios, discovery is an episodic event

We provide solutions to attain a micro-macro link in all these situations

design pattern: case studies

- showcase the usage of the design pattern
- in simplified situations
- in particularly challenging working conditions

design pattern: case studies

Multiagent simulations on fully-connected networks
Basic case study to investigate several parameterisations

.3.
Swarm robotics
exploration
:---:
simulations to exemplify
embodiment challenges

Multiagent simulations exploration
Mobile point-size particles capable to move in a 2D environment
Coexistence in heterogeneous cognitive networks
fully-decentralised solution for channel selection in cognitive radio networks

Case study \#1

.1.
Multiagent simulations on fully-connected networks
Basic case study to investigate several parameterisations

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., \& Trianni, V. (2015). A Design Pattern for Decentralised Decision Making. PLoS ONE, 10(10), e0140950-18.

Case study \#2

2.
Multiagent simulations exploration
Mobile point-size particles capable to move in a 2D environment

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., \& Trianni, V. (2015). A Design Pattern for Decentralised Decision Making. PLoS ONE, 10(10), e0140950-18.

Case study \#3

Reina, A., Miletitch, R., Dorigo, M., \& Trianni, V. (2015). A quantitative micro-macro link for collective decisions: the shortest path discovery/selection example. Swarm Intelligence, 9(2-3), 75-102.

Case study \#3

video by A. Reina
Reina, A., Miletitch, R., Dorigo, M., \& Trianni, V. (2015). A quantitative micro-macro link for collective decisions: the shortest path discovery/selection example. Swarm Intelligence, 9(2-3), 75-102.

Case Study \#4

4.
Coexistence in
heterogeneous
cognitive network
fully-decentralised
solution for channel
selection in cognitive
radio networks

Trianni, V., Cacciapuoti, A.S., \& Caleffi, M. Distributed Design for Fair Coexistence in TVWS. Submitted to the 2016 IEEE International Conference on Communications (ICC 2016), 23-27 May 2016, Kuala-Lampur, Malaysia

Case Study \#4

Trianni, V., Cacciapuoti, A.S., \& Caleffi, M. Distributed Design for Fair Coexistence in TVWS. Submitted to the 2016 IEEE International Conference on Communications (ICC 2016), 23-27 May 2016, Kuala-Lampur, Malaysia

Case Study \#4

Trianni, V., Cacciapuoti, A.S., \& Caleffi, M. Distributed Design for Fair Coexistence in TVWS. Submitted to the 2016 IEEE International Conference on Communications (ICC 2016), 23-27 May 2016, Kuala-Lampur, Malaysia

Case Study \#4

Coexistence in
heterogeneous
cognitive network

Trianni, V., Cacciapuoti, A.S., \& Caleffi, M. Distributed Design for Fair Coexistence in TVWS. Submitted to the 2016 IEEE International Conference on Communications (ICC 2016), 23-27 May 2016, Kuala-Lampur, Malaysia

E

$$
1
$$

